Отдел покрытосеменных (цветковых): Проводящие ткани
Проводящие ткани служат для передвижения по растению растворенных в воде питательных — органических и неорганических — веществ. Подобно покровным тканям, они возникли как следствие приспособления растений к жизни в двух средах — почвенной и воздушной. В связи с этим появилась необходимость транспортировки питательных веществ в двух направлениях.Проводящие ткани служат для передвижения по растению растворенных в воде питательных — органических и неорганических — веществ. Подобно покровным тканям, они возникли как следствие приспособления растений к жизни в двух средах — почвенной и воздушной. В связи с этим появилась необходимость транспортировки питательных веществ в двух направлениях. От корня к листьям движется восходящий, или транспирационный, ток водных растворов солей. Ассимиляционный, нисходящий, ток органических веществ направляется от листьев к корням. Восходящий ток осуществляется почти исключительно по трахеальным элементам ксилемы, а нисходящий — по ситовидным элементам флоэмы. Сильно разветвленная сеть проводящих тканей несет водораство римые вещества и продукты фотосинтеза ко всем органам растения, начиная от тончайших корневых окончаний до самых молодых побегов. Проводящие ткани объединяют все органы растения в единую систему, Помимо дальнего, т. е. осевого, транспорта питательных веществ, по проводящим тканям частично осуществляется и ближний — радиальный транспорт. Все проводящие ткани являются сложными, или комплексными, т. е. состоят из морфологически и функционально разнородных элементов. Формируясь из одних и тех же меристем, два типа проводящих тканей — ксилема и флоэма — располагаются рядом. Во многих органах растений ксилема объединена с флоэмой в виде различного рода продольных тяжей, называемых проводящими пучками.Существуют первичные и вторичные проводящие ткани. Первичные ткани закладываются в листьях, молодых побегах и корнях. Они дифференцируются из клеток прокамбия. Вторичные проводящие ткани, обычно более мощные, возникают из камбия. {mospagebreak}Ксилема (древесина). Термин «ксилема» ввел немецкий ботаник К. В. Негели (1817-1891). По ксилеме от корня к листьям передвигаются вода и растворенные в ней минеральные вещества. Первичная и вторичная ксилемы содержат клетки одних и тех же типов. Однако первичная ксилема не формирует сердцевинных лучей, отличаясь этим от вторичной. Первичная ксилема формируется из прокамбия, вторичная — из камбия. В состав ксилемы входят морфологически различные элементы, осуществляющие функции как проведения, так и хранения запасных веществ, а также чисто опорные функции. Дальний транспорт осуществляется по трахеальным элементам ксилемы — трахеидам и сосудам, ближний в основном по паренхимным элементам. Дополнительные — опорную, а иногда и запасающую — функции выполняют трахеальные элементы и волокна механической ткани либрифор-ма, также входящие в состав ксилемы. Трахеиды в зрелом состоянии — это мертвые прозенхимные клетки, суженные на концах и лишенные протопласта. Длина трахеид в среднем составляет 1-4 мм, поперечник же не превышает десятых и даже сотых долей миллиметра. Стенки трахеид одревесневают, утолщаются и несут простые или окаймленные поры, через которые происходит фильтрация растворов, с помощью которой осуществляется дальний транспорт. Впрочем, боковые стенки трахеид в определенной степени водопроницаемы, что способствует осуществлению ближнего транспорта. Большая часть окаймленных пор находится около окончаний клеток, т. е. там, где растворы «просачиваются» из одной трахеиды в другую. Трахеиды есть у спорофитов всех растений, а у большинства хвощевидных, плауновидных, папоротнико-видных и голосемянных они являются единственными проводящими элементами ксилемы. Между трахе-идами и волокнами либриформа существуют переходные формы. Сосуды — это полые трубки, состоящие из отдельных члеников, располагающихся друг над другом. Между расположенными один над другим члениками одного и того же сосуда имеются разного типа сквозные отверстия — перфорации. Благодаря перфорациям вдоль всего сосуда свободно осуществляется ток жидкости. Эволюционно сосуды, по-видимому, произошли из трахеид путем разрушения замыкающих пле нок пор и последующего их слияния в одну или несколько перфораций. Концы трахеид, первоначально сильно скошенные, заняли горизонтальное положение, а сами трахеиды стали короче и превратились в членики сосудов. Сосуды могут состоять из весьма значительного числа члеников различной длины и диаметра. Общая же длина сосудов достигает иногда нескольких метров. Диаметр же варьирует от 0,2 мм до 1 мм. Последнее зависит от вида растения, а у деревьев, растущих в сезонном климате, также и от того, в какой части ксилемы — «весенней» или «осенней» — сосуд расположен. Сосуды появились независимо в разных линиях эволюции наземных растений. Однако наибольшего развития они достигают у покрытосемянных, где являются главнейшими водопроводящими элементами ксилемы. Возникновение сосудов — важное свидетельство эволюционного прогресса этого таксона, поскольку они существенно облегчают транспирационный ток вдоль тела растения. Помимо первичной оболочки, сосуды, как и многие трахеиды, в большинстве случаев имеют вторичные утолщения. В самых ранних трахе-альных элементах вторичная оболочка может иметь форму колец, не связанных друг с другом {кольчатые трахеиды и сосуды). Позднее появляются трахеальные элементы со спиральными утолщениями. Затем следуют сосуды и трахеиды с утолщениями, которые могут быть охарактеризованы как спирали, витки которых связаны между собой {лестничные утолщения). В конечном итоге вторичная оболочка сливается в более или менее сплошной цилиндр, формирующийся внутрь от первичной оболочки. Этот цилиндр прерывается в отдельных участках порами. Сосуды и трахеиды с относительно небольшими округлыми участками первичной клеточной оболочки, не прикрытыми изнутри вторичной оболочкой, нередко называют пористыми. В тех случаях, когда поры во вторичной оболочке образуют подобие сетки или лестницы, говорят о сетчатых или лестничных трахеальных элементах (лестничные сосуды и трахеиды). Вторичная, а иногда и первичная оболочки, как правило, лигнифици-руются, т. е. пропитываются лигнином, это придает дополнительную прочность, но ограничивает возможности дальнейшего их роста в длину. Трахеальные элементы, т. е. трахеиды и сосуды, распределяются в ксилеме различным образом. Иногда на поперечном срезе они образуют хорошо выраженные кольца {кольце-сосудистая древесина}. В других случаях сосуды рассеяны более или менее равномерно по всей массе ксилемы (рассеяннососудистая древесина}. Особенности распределения трахеальных элементов в ксилеме используют при определении древесины различных пород деревьев. Помимо трахеальных элементов, ксилема включает лучевые элементы, т. е. клетки, образующие сердцевинные лучи, сформированные чаще всего тонкостенными клетками (лучевая паренхима). Реже, например, в лучах хвойных, встречаются лучевые трахеиды. По сердцевинным лучам осуществляется ближний транспорт веществ в горизонтальном направлении. В ксилеме покрытосемянных, помимо проводящих элементов, содержатся также тонкостенные неодревесневшие живые паренхимные клетки, называемые древесинной паренхимой. По ним отчасти наряду с сердцевинными лучами осуществляется ближний транспорт. Кроме того, древесинная паренхима служит местом хранения запасных веществ. Элементы сердцевинных лучей и древесинной паренхимы, подобно трахеаль-ным элементам, возникают из камбия, но из паренхимных инициалей. Клетки паренхимы, примыкающие к сосуду, могут (обычно у деревьев) образовывать выросты в полость сосуда через поры, так называемые тилы. Иногда тилы заполняют всю полость сосуда, и в этом случае проводящая функция нарушается. Тилообразование усиливает механическую прочность центральной части стволов деревьев. Кроме того, тилы играют особую роль в процессе формирования ядра древесины. {mospagebreak}Флоэма. Термин «флоэма» ввел К. В. Негели в 1858 г. Флоэма — сложная проводящая ткань, по которой осуществляется транспорт продуктов фотосинтеза от листьев к местам их использования или отложения (к точкам роста, подземным органам, зреющим семенам и плодам и т. д.). Первичная флоэма дифференцируется из прокамбия, вторичная (луб) — производное камбия. В стеб лях флоэма располагается обычно снаружи от ксилемы, а в листьях обращена к нижней стороне пластинки. Первичная и вторичная флоэмы, помимо различной мощности ситовидных элементов, отличаются тем, что у первой отсутствуют сердцевинные лучи. В состав флоэмы входят ситовидные элементы, паренхимные клетки, элементы сердцевинных лучей и механические элементы. Большинство клеток нормально функционирующей флоэмы живые. Отмирает лишь часть механических элементов. Собственно проводящую функцию осуществляют ситовидные элементы. Различают два их типа: ситовидные клетки и ситовидные трубки. Стенки ситовидных элементов содержат многочисленные мелкие сквозные канальцы, собранные группами в так называемые ситовидные поля. У ситовидных клеток, вытянутых в длину и имеющихзаостренные концы, ситовидные поля располагаются главным образом на боковых стенках. Ситовидные клетки — основной проводящий элемент флоэмы у всех групп растений, исключая покрытосемянные. Клеток-спутниц у ситовидных клеток нет. Ситовидные трубки покрытосемянных более совершенны. Они состоят из отдельных клеток — члеников, располагающихся один над другим. Длина отдельных члеников ситовидных трубок колеблется в пределах 150-300 мкм. Поперечник ситовидных трубок составляет 20-30 мкм. Эволюционно их членики возникли из ситовидных клеток. Ситовидные поля этих члеников находятся главным образом на их концах. Ситовидные поля двух расположенных один над другим члеников образуют ситовидную пластинку. Ситовидные поля (название указывает на их сходство с ситом) представляют собой участки клеточной стен ки, пронизанные многочисленными мелкими отверстиями, через которые с помощью цитоплазматических тяжей сообщаются протопласты соседних ситовидных элементов. Членики ситовидных трубок формируются из вытянутых клеток прокамбия или камбия. При этом материнская клетка меристемы делится в продольном направлении и производит две клетки. Одна из них превращается в членик, другая — в клетку-спутницу. Наблюдается и поперечное деление клетки-спутницы с последующим образованием двух-трех подобных клеток, расположенных продольно одна над другой рядом с члеником. Предполагается, что клетки-спутницы вместе с члениками ситовидных трубок составляют единую физиологическую систему и способствуют продвижению тока асси-милятов. Кроме того, в клетках-спутницах вырабатываются различные ферменты, которые передаются в ситовидные трубки. При своем формировании членик ситовидной трубки имеет постенную цитоплазму, ядро и вакуоль. С началом функциональной деятельности он заметно вытягивается. На поперечных стенках появляется множество мелких отверстий-перфораций, образующих канальцы диаметром в несколько микрометров, через которые из членика в членик проходят цитоплазматиче-ские тяжи. На стенках канальцев откладывается полисахарид — каллоза, сужающий их просвет, но не прерывающий цитоплазматическиетяжи. По мере развития членика ситовидной трубки в протопласте образуются слизевые тельца. Ядро и лейкопласты, как правило, растворяются. Граница между цитоплазмой и вакуолью — тонопласт — исчезает, и все живое содержимое сливается в единую массу. При этом цитоплазма теряет полупроницаемость и становится вполне проницаемой для растворов органических и неорганических веществ. Слизевые тельца также теряют очертания, сливаются, образуя слизевый тяж и скопления около ситовидных пластинок. На этом формирование членика ситовидной трубки завершается. Длительность функционирования ситовидных трубок невелика. У кустарников и деревьев она продолжается не более 3-4 лет. По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело} и затем отмирают. Отмершие ситовидные трубки обычно сплющиваются давящими на них соседними живыми клетками. Основными веществами флоэмного тока являются сахара, главным образом сахароза. Кроме того, обнаружены азотсодержащие вещества (преимущественно аминокислоты), органические кислоты и фито-гормоны. Скорость передвижения ассими-лятов во флоэме относительно невелика — 50-100 см/ч (по ксилеме примерно в 2 раза быстрее). Сам процесс передвижения включает ряд этапов и идет со значительной затратой энергии. Паренхимные элементы флоэмы [лубяная паренхима} состоят из тонкостенных клеток. В них откладываются запасные питательные вещества, и отчасти по ним осуществляется ближний транспорт ассимиля-тов. У голосемянных клетки-спутницы отсутствуют, и их роль до известной степени выполняют прилегающие к ситовидным клеткам немногочисленные клетки лубяной паренхимы. Сердцевинные лучи флоэмы также состоят из тонкостенных парен-химных клеток. Они предназначены для осуществления ближнего транспорта ассимилятов. {mospagebreak}Проводящие пучки. Обособленные тяжи проводящей системы, состоящие чаще из ксилемы и флоэмы, называют проводящими пучка-ми. Первоначально они возникают из прокамбия. Из клеток прокамбия вначале дифференцируются элементы протофлоэмы (центробежно) и протоксилемы (центростремительно). У корня и те и другие элементы дифференцируются центростремительно. Позднее прокамбий образует элементы метафлоэмы и метакси-лемы. Образовавшиеся из прокамбия проводящие пучки иногда называют первичными. В тех случаях, когда часть прокамбия сохраняется и превращается затем в камбий, а пучок способен к вторичному утолщению, говорят об открытых пучках. Они встречаются у большинства двудольных и голосемянных. В закрытых пучках однодольных прокамбий полностью дифференцируется в проводящие ткани и далее не утолщается. Вокруг пучков нередко формируется обкладка из живых или мертвых паренхимных клеток. Они могут быть полными, т. е. состоящими из флоэмы и ксилемы, или изредка неполными, состоящими только из ксилемы или флоэмы. В зависимости от взаимного расположения флоэмы и ксилемы различают пучки нескольких типов. Чаще всего флоэма лежит по одну сторону от ксилемы. Такие пучки называют коллатеральными (открытые и закрытые). У части двудольных растений (из семейств пасленовых, вьюнковых, тыквенных и т. д.) одна, более мощная, часть флоэмы располагается снаружи от ксилемы (камбий располагается между ними), а другая — с внутренней стороны ксилемы. Такой пучок называется биколлатеральным, а соответствующие участки флоэмы — наружной и внутренней флоэмой. Биколла-теральные пучки формируются, оче- • видно, в результате слияния двух коллатеральных пучков. Встречаются также концентрические пучки, при этом флоэма окружает ксилему (центроксилемные пучки) либо, наоборот, ксилема окружает флоэму (центрофлоэмные). Центрофлоэмные пучки найдены в стеблях и корневищах ряда двудольных (ревень, щавель,бегония)и однодольных (многие лилейные, осоковые). Известны пучки промежуточные между закрытыми коллатеральными и центрофлоэмными. Центроксилемные пучки обычны для папоротников. В центре молодых корней голосемянных и покрытосемянных, имеющих первичное строение, располагается проводящий пучок, получивший название радиального. Ксилема в таком пучке как бы расходится лучами от центра, а флоэма располагается между лучами. Возникают эти пучки из прокамбия. Встречаются однолучевые (монархные), двулучевые (диархные), трехлучевые (триар-хные), четырехлучевые (тетрархные), пятилучевые (пентархные) и многолучевые (полиархные) радиальные пучки. Последние обычны у однодольных.
29.06.2015
29.06.2015